

idicomposites.com

TROUBLESHOOTING MOLDING PROBLEMS

Molding Guide for BMC & SMC

IDI Composites International June, 2017

Table of Contents

Blisters	3
Bond Failure	4
Bond Readout	5
Chip	6
Contamination	7
Crazing (Surface Cracks)	8
Dieseling	9
Dirt	10
Dull Surface	11
Ejector Cracks	12
Fiber Pull	13
Fiber Tear	14
Finger Tracks	15
Fish Eye	16
Flow Marks	17
Fractures	18
Gouge	19
Hanging Fibers	20
Knit Lines	21
Laking	22
Mold Marks	23
Molded Poly	24
Non-Fill	25
Paint Sags	26
Porosity	27
Pre Gel	28
Resin Rich	29
Rib, Pin and Boss Readout	30
Ripple	31
Sand Through	32
Sander Scratches	33
Scratch	34
Separation (Phasing)	35
Scumming	36
Sink Marks	37
Sticking	38
Streaking (Abrasion)	
Surface Waviness	40
Undercure	41
Warpage (Dimensional Error)	42
Water Spots	
White Spots	

Blisters

A blister is a delamination that produces a bulge on the surface of the part. This bulge is usually regular in shape and can range in size from 1/8 to 10 inches. A blister is caused by the presence of gases under pressure within the substrate, forcing the skin away from the glass. Can be seen on painted or unpainted parts.

painted of drip	<u> </u>
Probable Caus	
Material	 Insufficient glass wet out with resin (dry glass)
	Foreign objects/contamination (film, flash, etc.) in or on the charge
	Wrinkles/pockets in discontinuous surface of SMC charge pattern
Process	Adding small SMC pieces to charge pattern which trap air
	Insufficient pressure on SMC during cure cycle
	Oven temperature heat-up rate too fast, especially in combination with a high
	moisture content part
	Improper charge patter (too large, rolled or folded)
	Mold temperature out of spec
	Vacuum too low; improper vacuum cycle
	Low cure time (under cure)
	Press closure speed to fast (air trapped in laminate)
Tooling	Mold shear edge is too tight (not allowing air to bleed out)
	Tool Deflection
Corrective Act	ion
Material	Check for fiberglass wet out
	Check material for contaminants and check for moisture contamination
	Evaluate viscosity levels affect on blisters, look at high, medium and low
	Use less reactive catalyst
	Select different shrink additives
	Verify material is not dried out
Process	Increase material flow distance
	Increase molding pressure
	Pyramid charge in center of the tool
	Load pattern, location, size, thickness
	Appropriate vacuum amount and timing (position)
	Appropriate press closure speeds
	Appropriate mold temperatures
	Appropriate cure time
	Do not use makeup pieces in the charge
	Be certain mold shears are clean with at least 0.004" of flash
Tooling	Check for mold deflection
	Check for Platen parallelism

Bond Failure

Failure of a bonde	ed assembly, usually at the interface of the adhesive and the substrate
Probable Cause	
Material	Out of spec SMC
Process	Gel time of adhesive too short to permit proper bonding
	Bond not fully cured before clamps are removed
	Improperly prepared bond surfaces
	Mix ratio of the two-component adhesive is off
	Moisture contamination of adhesive or surface to be bonded
	Out of spec adhesive
	Excessive internal or external mold release in/on the SMC
	Shift between inner and outer panels during curing of the adhesive
	Incompatible substrate and bond material
	Introduction of air into dispense system causing gaps, ratio variations
	Improper cure cycle
	Improper heating during bond cycle
Tooling	
Corrective Action	
Material	
Process	Improve QC of adhesive material
	Fully cure adhesive before pressure or clamping is removed
	Properly prepare surfaces to be bonded
	Ensure that periodic check of the mix ratio is performed
	Control temperature of adhesive
	Do no use external mold release on bond areas
Tooling	

Bond Readout

Bond readout	is a surface distortion similar to a hump or sink that occurs over a bond line
Probable Caus	e
Material	
Process	Mismatch of compliance between outer panel, inner panel and adhesive
	Incompatible thermal expansion coefficients between the SMC and the
	adhesive
	Excessive shrinkage of the adhesive during the fixturing and curing cycles
	Excessive fixturing pressure induced due to part mismatch of the outer/inner
	panels and the bond line standoffs
	Excessive fixturing temperature due to non-uniform heating
	Hot spots from adhesive exothermic reaction due to non-uniform adhesive
	thickness
	Bond gap thick above 1.5 mm
	Bond gap thin below 0.5 mm
	Outer panel thin, less than 2.0 mm
	Inner thickness above maximum
Tooling	
Corrective Act	ion
Material	
Process	• Increase the thickness of the bonding area of the appearance panel or select a
	more flexible adhesive
	Match the thermal expansion coefficients between the substrate and the
	adhesive as much as possible
	Select an adhesive with minimum polymerization shrinkage
	Obtain matched outer/inner panels through better tooling
	Eliminate bond line standoffs
	Use closed-loop feedback temperature control system for tighter temperature
	variation tolerance of the fixture
	Minimize and control clamp pressure
	Mold warp-free parts; do not use adhesive bond fixture to straighten parts
	Check adhesive thickness to specification
	Check outer thickness to specification
	Check inner thickness to specification
Tooling	

Chip

A chip is dama	age to the surface of the part that results in small (less than /2 inch) missing pieces. A
chip usually o	ccurs near the edge, and since it is nonstructural, it usually is repairable
Probable Caus	se
Material	Resin-rich edge
Process	Rough handling
	Rough bypass
	Shipping racks lack necessary padding
	No use of in-process racks (parts are stacked on each other)
	Squared edge on part at mating surface with adjacent parts
Tooling	Improperly designed secondary fixtures (non padded in all necessary areas)
	Mold defects on edges or flash stuck to shear edge
Corrective Act	tion
Material	Increase compound viscosity
Process	Utilize transfer lines and other hands-off processing techniques
	Train workers in proper handling techniques
	Improve shipping procedures and monitor part quality
	Improve shipping rack repair procedures
	Add external mold release and clean
	Slow ejector speed
	Slow press closure rate
	Relocate charge
	Decrease molding pressure
Tooling	Design secondary fixtures properly and coat them with soft materials to absorb
	shocks
	Preventative maintenance on molds and fixtures
	Periodically clean flash on shear edges and gummy deposits of styrene
	Polish tool surface

Contamination

Foreign mater	rial in the laminate
Probable Caus	se
Material	Foreign material in SMC compound or raw materials
Process	Foreign material from the molding presses
Tooling	
Corrective Ac	tion
Material	Check for foreign materials in molding compound and cut out if necessary
	Check for foreign materials in raw materials
Process	
Tooling	

Crazing (Surface Cracks)

Craze cracks are hairline cracks that do not go through the entire thickness of the part. These cracks usually occur in groups. Craze cracks can appear similar to porosity on painted parts.

n groups. Craze cracks can appear similar to porosity on painted parts.
e
Mechanical overstressing caused by part sticking in the mold or rough handling
Poor material flow pattern around mash-offs, core pins, mold outs
Thermal stresses induced by mold temperature or by non-uniform part cool
down
Charge pattern changed by adding small pieces to make up weight
• Ejector pins
Thick-to-thin wall thickness variation
Secondary fixtures improperly designed
Thick-to-thin wall thickness variation
Ribs too thick with respect to wall thickness
Cored holes or slides too low from designated surface position
ion
Train workers in proper handling techniques
Cool parts at a uniform rate
Design charge pattern to minimize improper flow behavior
Do not use makeup pieces in charge pattern
Minimize mash-offs
Slow ejection system to reduce ejector pin crazing
Increase differential temperature between core and cavity
Design secondary fixtures so they do not induce stress on the part and coat
them with soft materials to absorb shock
Polish shear edges of cavity, eliminate back draft or undercuts
Ensure smooth transition from thick to thin sections

Dieseling

Dieseling is a bur	nt spot on the laminate, often accompanied by non-fills
Probable Cause	
Material	
Process	Air entrapped in the tool which burns
Tooling	
Corrective Action	
Material	
Process	Increase material flow distance
	Slow press closure
	Vary mold temperature differential
	Increase shear opening (assumes dieseling occurs near the shear edge
	Add vented ejector pins
Tooling	

Dirt

51.1.	
	ulate contaminate under or in any paint film that shows up as a raised bump of the
cured paint fil	m.
Probable Cau	se
Material	
Process	Dirt on parts as received
	Dirt created by repairing SMC defects
	Dirt on the paint rack that is not washed off
	Dirt, hair, fibers, etc. from workers
	Improper paint shop cleanliness
	De-ionized rinse out of spec
Tooling	
Corrective Ac	tion
Material	
Process	Installation of appropriate power washer
	Automate paint operations
	Proper maintenance of paint equipment and paint booth
	Remove and clean overspray on the paint racks per agreed-upon schedule
	Analyze dirt particles to accurately determine source
	Clean overhead conveyor
	Improve paint shop cleanliness procedures
Tooling	

Dull Surface

Loss of gloss o	n overall part surface	
Probable Caus	se	
Material	High shrinkage	
Process	Under cure	
	Loss of pressure	
Tooling	Unacceptable tool surface	
Corrective Act	ion	
Material	Check for catalyst level	
	Check resin reactivity	
	Select different shrink additives or levels	
Process	Increase mold temperature	
	Increase cure cycle	
	Increase molding pressure	
	Maintain constant material pressure in press	
Tooling	Polish and buff tool surface	
	Chrome plate tool surface	

Ejector Cracks

Ejector cracks are small, visible surface cracks on the cavity side surface of the molded part. These are often found on the opposite side of the part above an ejector pin. A crack located on the surface of the laminate that does not extend completely through the substrate.

Probable Caus	se
Material	Resin Reactivity
Process	The part is sticking to the core
	The part is under-cured
	Cure time is too low
	Mold temperature is too low
	Insufficient release agent
	• The ejector pin is placed in a poor location, too few fins or too small a diameter
Tooling	Ejection system is too fast
	Blocked air to popper passage (partial)
	Improperly sized air supply line to air popper
	Ejection system leading air popper blow off
	Excess flash around ejection pin
	Undercuts along shear (acting as "hangers")
Corrective Act	tion
Material	Use less reactive catalyst
Process	Check temperature and cure times
	• Place ejector pins in areas least sensitive such as below ribs or bosses, increase
	diameter or number of pins
	Add vented ejector pins
	Verify correct load pattern weight
	Add external mold release, mold one part, then discard that part
	Clean shear edges
Tooling	Slow ejection system
	Check mold for undercuts
	 Alleviate stresses holding the part too tight to the core (undercuts, etc)
	Proper sequencing of air popper system
	 Inspect mold for biased ejection, install flow control or dividers
	If ejectors are on angled surface add skid grooves to top of ejector pin

Fiber Pull

Fiber Pull is a	depression left by removing or loosening of fiberglass strands located near the surface
of the laminat	te.
Probable Cau	se
Material	Sticking
Process	Flash buildup on the by-pass
Tooling	Worn by-pass
Corrective Ac	tion
Material	
Process	Add external mold release and clean by-pass
	Vary mold temperature differential (normally narrow the difference)
	Decrease by-pass opening
	Correct ejector action (are all ejector pins working)
	Slow ejector speed
Tooling	

Fiber Tear

Fiber tear is a	surface defect caused by fibers tearing away part of the surface resin. These defects
always occur i	near the shear edge of a part.
Probable Cau	se
Material	
Process	Improper deflashing of the part
	Ejector speed too fast
	Charge weight too high
	Mold temperature differential incorrect
	Molding pressure too high
	Molding viscosity too low
	• Shear edge temperature variance too liberal (causing excess flash/leakage)
	Molding press strip speed too fast
	Flow parallel to shears
Tooling	Improperly fit or worn shear edges
Corrective Ac	tion
Material	
Process	Use sandpapers, file or automatic router to deflash instead of a knife
	Closer inspection of punched and drilled holes
	• Use high technology process such as router, water jet, laser or ultrasonics to
	perform deflash, punch and drill operations
	Verify correct load pattern weight
	Verify appropriate temperature differential between core and cavity
	Verify appropriate molding temperature
	Slow ejector speed
	Adjust charge to minimize flow parallel to shears
Tooling	Maintain proper shear edge on molds to minimize flash

Finger Tracks

Finger tracks ar	e shallow groves in the surface that show up after prime or top coat. These grooves
are usually the	width of a finger.
Probable Cause	
Material	
Process	Sanding the surface without a block or backup pad. The pressure directly under
	the fingers removes more material than between the fingers and leaves tracks
	that show up on the painted surface
	• It is generally accepted that the eye can detect surface depressions of 0.0004
	inches or greater over a one-inch span
Tooling	
Corrective Action	on
Material	
Process	Always use block or pad when sanding the surface
	Develop sanding and feathering techniques that blend surface changes over
	large areas
	Use 400 grit or finer sandpaper
Tooling	

Fish Eye

Dualanta Causa	
Probable Cau	se
Material	
Process	• Oil, grease or silicone contamination in paint system, air feed, paint conveyor
	line or in the paint itself
	Rags containing oil or oil byproducts
	Excess mold release at source
	Insufficient cleaning of the part
	Overspray of primer
	Mismatch of solvent with paint or prime system
	• Ensure parts are not being sprayed or dripped on at press by hydraulic oils (if
	so, with 50% IPA and 50% DI water)
Tooling	
Corrective Ac	tion
Material	
Process	Do not use silicone-containing hand creams or lubricants during handling at
	press-side or bonding
	Properly installed power washer for all SMC parts
	Proper maintenance of equipment (filters, etc.)
	Ensure proper use of oils and lubricants in the paint shop
	Proper QC procedures on all paint materials
	• Fish eye reducing additives to paint are available.
Tooling	

Flow Marks

Flow marks is	the visual orientation of fiberglass strands on the part surface
Probable Caus	se
Material	
Process	Flow condition
Tooling	Tool design
Corrective Act	ion
Material	Evaluate molding viscosity effect
	Select different shrink additives or levels
Process	Decrease material flow distance
	Relocate charge pattern
	Increase press closure rate
Tooling	Change part wall thickness

Fractures

A Fracture is a	a structural failure in a part which extends complete through the substrate
Probable Cau	se
Material	Insufficient glass reinforcement
	Sticking or wedging of part in mold
Process	Mechanical hang-up from flow related knit lines
	Rough handling
	 Poor material flow pattern around mash-offs, etc.
	Charge pattern change by adding small pieces to produce proper weight
	In process racks not used or poor quality secondary fixtures
	Press opens askew
	Poor part design (if every part is cracked)
	Improper combination of drill speed and feed rate
	Shipping damage
	Heavier shear on one edge
	Dull drill bit or worn out sleeve
	Undercut at parting lines or undercut in the mold
	Shears too tight
	Cure time too short
	Parallelism of ejectors
Tooling	Improperly-designed secondary fixtures or tooling
Corrective Ac	
Material	 Control SMC sheet weight to allow use of automatic cutting of charge patterns
	Use QC on SMC glass content
	Check SMC flow
Process	Train workers in proper handling techniques
	 Reduce material flow distance (reduce the flow front)
	Design charge pattern to minimize improper flow behavior
	Do not use make-up pieces in charge patterns
	Properly support part in shipping containers
	Evaluate proper paint rack design
	Check shears
	Change drill bit or sleeve
	Eliminate any undercuts in the mold
	Increase cure time
	Slow ejector speed
	Vary mold temperature differential
	Add vented ejector pins
	Relocate charge
Tooling	 Design secondary fixtures so that they do not induce stress in the part
	Draw polish shear edges in the cavity
	Use parallelism control on the press
	Change part wall thickness

Gouge

A gouge is a lo	ong, deep depression in the surface, severe enough to require a repair procedure.
Gouges can b	e several thousands of an inch deep.
Probable Cau	ise
Material	
Process	Rough handling
	• Improperly designed secondary fixtures (not padded in all necessary areas)
	Mold defects on edges or flash stuck to shear edge
	Shipping racks lack necessary padding
	No use of in-process racks (parts are stacked on each other)
	Square edge on part at mating surface with adjacent parts
Tooling	
Corrective Ac	tion
Material	
Process	Investigate potential source for gouges in process and correct
	Train workers in proper handling techniques
	Design secondary fixtures properly and coat them with soft materials to absorb
	shocks
	Preventative maintenance on molds and fixtures
	Periodically clean flash on shear edges
	Improve shipping rack repair procedures
	Utilize transfer lines and other hands off processing techniques
	Repair using approved repair procedure
Tooling	

Hanging Fibers

Hanging fibers are	glass fibers that are left hanging from the part after a deflashing, hold piercing or
drilling operation.	These fibers cause dirt to be carried into the paint shop.
Probable Cause	
Material	
Process	Dull or improperly fit secondary tooling (bits, mash-offs, punches, etc.
	Improper sanding to remove fibers
Tooling	Dull deflashing tool
Corrective Action	
Material	
Process	Closer inspection of pierced and drilled holes
	Use high technology process such as router/drill bit design, water jet, laser or
	ultrasonics to perform deflash, punch and drill operations.
Tooling	Proper maintenance program need for molds, pierce dies and secondary tools.

Knit Lines

Knit line is a term for the molding condition which relates to oriented fiber patterns in the molded part. The knit line usually occurs at the edges or corners of the part furthest from the charge placement position. It is an extremely weak area in the molded part resulting from two flow fronts meeting.

Probable Caus	se	
Material		
Process	Flow fronts from different charge pattern pieces	
	Too far of a distance for the SMC to flow	
	Charge pattern position	
	Incorrect rate of tonnage build	
	Spiral flow of SMC to high/low	
	Mold temperatures too high	
Tooling	Mold design (deep vertical walls), etc.	
Corrective Act	tion	
Material		
Process	Appropriate load placement	
	Proper press closure	
	Proper load pattern dimensions	
	Consistent tonnage build	
	Check oil level in press	
	Place charge directly over critical or knit line area if possible	
	Decrease closure speed (reduce amount of orientation)	
	Eliminate separate charges if possible	
	Verify correct molding temperature	
Tooling	Optimize mold design for best flow conditions	

Laking

Laking is an irr	egular dull area on the surface of the part. The dull area may be associated with	
porosity. Lakir	g can also be noticed after prime as "soak-in"	
Probable Caus	e	
Material	Differential shrinkage	
Process	Too low a pressure on the part during molding (usually on vertical walls	
	Molding on stops	
	Load pattern weight too low	
	Under-cured part	
	Cold spots on mold	
Tooling		1
Corrective Act	ion	
Material	Select different shrink additives and/or levels	
Process	Maintain pressure on material during molding	
	Do not mold on stops or flash	
	Verify load weight is correct and not too low	
	Verify mold temperatures	
	Increase pressing speed	
Tooling	Equip press with parallelism control	

Mold Marks

A mold mark is	s a lump, depression or line that occurs in the same location of every part due to a
damaged mole	d
Probable Caus	se .
Material	
Process	
Tooling	Damage to the cavity of the mold due to insufficient protection
	Stuck parts that require scraping off the mold
	Improper tools used to clean the mold
	Thickness variation flowing thin to thick causing tool wear
	Hard metal object molded into part causing mold damage
Corrective Act	ion
Material	Proper QC of SMC materials will reduce the sticking of parts
Process	
Tooling	Repair molds as required Regular maintenance program for molds
	Make sure all cutting utensils are made from soft materials that will not damage the mold surface
	• Make sure all employees use only copper, brass, wood or plastic tools to scrape the mold surface
	Wire down all loose items on the cutting table and loading/unloading equipment
	Protect mold surface in transport and storage
	• Automation should be constructed from aluminum or other soft materials

Molded Poly

	-
Irregular shap	ed, small depressions on the surface of a part shaped like carrier film chips, but
recessed into	the substrate. These depressions are normally the colour of the film.
Probable Cau	se
Material	
Process	Pieces of carrier film that are molded into the SMC part
Tooling	
Corrective Ac	tion
Material	
Process	Make sure that all carrier film is removed from the charge, especially when
	automatic film stripping is not used.
	Proper repair procedure required
	Frequent changing of blades to ensure clean cuts
	• Check for proper slitter cutter alignment to shear guide. Improper alignment
	will cause a small strip to adhere to the edge of the SMC unnoticed.
Tooling	

Non-Fill

Probable Caus	se
Material	
Process	Tonnage too low
	Mold temperatures too high
	Not enough SMC charge weight
	Molding on stops
	Press closure too slow (tonnage build rate too slow)
	Mold temperatures of cavity and core are too close (no flash)
	Flash/debris on the mold shears/stops
	SMC charge sits on mold too long before closure
	SMC charge has to flow too far
Tooling	Tool or platen deflects
Corrective Ac	tion
Material	Decrease molding viscosity
	Use less reactive catalyst
Process	Verify parameters to control plan/process sheet (tonnage, load pattern, load)
	placement, temperature, closure speeds)
	Check SMC spiral flow
	Verify molding off stops
	Clean mold shears/stops
	Check for deflection
	Monitor SMC viscosity build
	Verify weight scales are correct
	Increase molding pressure
	Increase closure speed
	Ensure charge weights are balanced
	Decrease material flow distance
	Check oil level in press
	Vent ejector pins and/or add vented ejector pins
	Shorten tool load time
Tooling	Blend core half to reduce thin to thick flow restrictions in area of non-fill

Paint Sags

A sag is exces	s paint on a part that shows itself as a hump or ripple that distorts the surface.
Probable Cau	se
Material	
Process	Oven temperature too low
	Viscosity of paint too low, too much solvent
	Film build too thick
	Spray gun too close to part being painted
	• Inconsistent sanding of parts to be reworked (causing sags when painting with
	electrostatics)
Tooling	
Corrective Ac	tion
Material	
Process	QC paint viscosity on each shift
	Monitor and control ultimate over temperature and heat up rate
	Do not allow painters to get ahead or behind job sequence
	Instruct painters on proper spray techniques
	Preventative maintenance of spray equipment
	Implement automatic paint spraying equipment
	Verify appropriate air pressure
	Verify appropriate paint pressure
	Increase distance between part and gun
	Use more coats of paint to get desired film build
	Thoroughly scuff sand reworks prior to paint.
Tooling	

Porosity

Porosity is an observable or unobservable condition in any part. It consists of a cluster of holes that usually occurs when trapped air escapes during the molding process. This cluster usually covers an area no larger than a quarter, but can be larger, and can occur as a single hole. Unfilled porosity creates a crater-type condition on a top coated part

Probable Caus	se
Material	Excess styrene loss
Process	 Excess styrene loss Insufficient flow of the SMC; too large/small a charge pattern Pre-gel Flash on shear edge prevents adequate venting of gasses Insufficient pressure on material during molding Improper press closure speed Mold temperature too high Vacuum too low; improper vacuum cycle Undercure Low charge weight Adding small SMC pieces to charge pattern Too many plies
Taglian	Molding on stops Moisture contamination
Tooling Corrective Act	ion .
Material	Evaluate viscosity level Verify material is not dried out
Process	 Verify vacuum amount and timing Verify load pattern location, size, thickness Verify appropriate press closure speeds Verify appropriate temperatures Verify molding off stops Make sure mold shears are clean Increase material flow distance Minimize number of plies in charge Check charge weight Check molding pressure Clean mold stops
Tooling	Change part wall thickness

Pre Gel

Probable Caus	se
Material	Too reactive resin
	Too reactive catalyst
Process	Slow closure rate
Tooling	
Corrective Act	tion
Material	Check resin reactivity
	Use less reactive catalyst
Process	Shorten tool loading time
	Increase press closure rates
	Decrease mold temperature
Tooling	

Resin Rich

Probable Caus	se	
Material	Resin is not carrying fiberglass strands	
Process		
Tooling		
Corrective Ac	tion	
Material	Increase material molding viscosity	
Process	Relocate charge pattern	- 100
	Decrease material flow distance	
	Slow pressure closure rate	
Tooling		

Rib, Pin and Boss Readout

•	ression located over ribs, bosses, ejector pins or thick sections of the part that appealor resulting in read through.
Probable Cau	se
Material	
Process	Lack of material flow
	Lack of cavity/core temperature differential
	• Lack of a tonnage "bump" (decrease molding pressure after 30 seconds into
	cycle)
Tooling	
Corrective Ac	tion
Material	
Process	Increase material flow distance (do not load over a boss)
	• Increase mold temperature differential (the hotter appearance side will gel
	slightly faster and will reduce the amount of sink)
	Reduce tonnage after mold fill (high tonnage held through the cure cycle
	increases sink. Reduce tonnage by 25% to 30% after 30 seconds.
Tooling	

Ripple

Probable Caus	se
Material	Improper viscosity
	Material too old and will not flow properly
	Higher paste shrinkage
	Improperly maturated SMC
	Extremely high-flowing SMC
Process	Inconsistent force on the material during molding
	Charge pattern placed or cut improperly
	Temperature of mold too high or dropped temperature zone of mold
	Improper closure speed
	Abrupt thick-to-thin flow condition
	Reflow of material due to non-parallel closure (leveling)
Tooling	Mold not centered to press platen
	Flow turbulence resulting from tool design
Corrective Act	tion
Material	Investigate viscosity of paste
	Verify SMC is within appropriate spiral flow
	Investigate past shrinkage
Process	Increase tonnage
	Decrease material flow distance
	Verify charge weight
	Verify molding off stops
	Monitor and control mold temperatures to specs
Tooling	May need to offset mold
	Modify tooling

Sand Through

A sand throug	h is a break through the primer surface resulting from a sanding operation.
Probable Caus	se
Material	
Process	 Localized sanding that is deeper and more severe than is necessary (finger sanding) Tipping power sander to cut deeper in one area to remove dirt or other
	localized defects • Sanding with too course a sandpaper
Tooling	Sanding With too coarse a sandpaper
Corrective Act	tion
Material	
Process	 Always block sand defects Repair mold when mold marks appear to minimize the amount of sanding Goal is to avoid using sandpaper Eliminate use of power sanders Use only 400-grit or finer sandpaper
Tooling	

Sander Scratches

Probable Caus	
Matarial	se
Material	
Process	Sanding curved areas of part with a flat sander
	Improper grit size paper
	 Sanding Class "A" surface to remove die marks
	Repair procedures for all defects
	Poor flash removal methods which require additional sanding
	Excessive loading of sandpaper with sanding debris
Tooling	
Corrective Ac	tion
Material	
Process	Establish specification describing grit size for specific operations
	Hand sand curved areas that require sanding
	Repair die marks on mold, not on parts
	Automate flash removal to eliminate error
	Specify paper grit size for every repair method
	Specify sandpaper change interval
	Clean debris from unloading fixture or racks

Scratch

	ther sanded out.
Probable Caus	se
Material	
Process	Rough handling
	• Improperly designed secondary fixtures (not padded in all necessary areas)
	Mold defects on edges or flash stuck to shear edge
	Shipping racks lack necessary padding
	No use of in-process racks (parts are stacked on each other)
	Square edge of part a mating surface with adjacent parts
Tooling	
Corrective Ac	tion
Material	
Process	Train workers in proper handling techniques
	 Design secondary fixtures properly and coat them with soft materials to absorb shocks
	 Design secondary fixtures properly and coat them with soft materials to absorb shocks
	Preventative maintenance on molds and fixtures
	Periodically clean flash on shear edge
	Improve shipping procedure and monitor part quality
	Improve shipping rack repair procedures
	Utilize transfer lines and other hands-off processing techniques
	Repair using approved repair procedure
Tooling	

Separation (Phasing)

Probable Caus	se
Material	Separation of the thermoplastic resin from polyester
Process	
Tooling	
Corrective Act	tion
Material	Increase molding viscosity
	Select different shrink additives and/or levels
Process	Shorten die loading time
	Increase material flow distance
	Decrease molding pressure
	Decrease molding temperature
Tooling	

Scumming

Dulling or stre	aks in the part (generally transfers a similar pattern on the tool surface).
Probable Caus	se
Material	Incompatible resin additives
Process	Internal mold release not functioning at the mold temperature
Tooling	
Corrective Act	tion
Material	Use greater viscosity material
	Select different shrink additives and/or levels
Process	Increase mold temperature
	Increase material flow distance
	Shorten tool loading time
Tooling	

Sink Marks

A sink is a depression on the part surface that will normally occur over ribs or bosses. It is possible to get a sink on the edge of a flanged part. Sinks can range in depth from 0.0004 to several thousands of an inch anywhere along a rib or boss.

of an inch any	where along a rib or boss.
Probable Caus	e
Material	Poor glass orientation
	Excess shrinkage of the SMC over a thick section
Process	Inadequate molding pressure
	Temperature variations due to variable thickness
Tooling	Improper rib design
Corrective Act	ion
Material	Select different shrink additives and/or levels
Process	Flow material from a thick section to a thin section so as not to create surge
	flow patterns in localized areas (the surge flow orients glass fibers perpendicular
	to adjacent areas which shows up as a sink).
	Cross sectioning the wall section may be necessary to prove a thin-to-thick
	flow condition
	Control aspect ratio of rib and boss (depth-to-thickness ratio); rib should not
	be more than 0.075" thickness of attached wall
	Place ribs and bosses behind design lines
	Mold off stops
	If sink is over a "boss", reduce mass by having a long cored hole
Tooling	Modify tooling

Sticking

Sticking occur	s when the part adheres to the cavity or core and is not easily released or results in a	
crack upon re	moval.	
Probable Cause		
Material	Release problem with the SMC	
	SMC shrinkage control is incorrect	
Process	Core is too rough	
	Charge weight is excessive	
	Undercuts on cavity or core	
	Part is under-cured	
	Temperature spread on dies too close	
	Press strip is too fast	
	Contaminated mold surface (oils, dirt, etc)	
Tooling	Mold surface is corroded	
Corrective Act	tion	
Material	Check for SMC release	
	Check SMC shrinkage data	
Process	Slow strip speed	
	Clean mold surface/run break-in material	
	Add external mold release	
	Increase cycle time	
	Increase mold temperature	
Tooling	Evaluate mold for undercuts and remove where necessary	
	Check chrome plating wear	
	Polish tool surface	
	Pyramid charge in the center of the tool	

Streaking (Abrasion)

Dark areas, direc	ctional, in line of flow, found in pigmented parts and is generally located over
fiberglass stranc	ls
Probable Cause	
Material	
Process	
Tooling	Tool abrasion or scuffing
Corrective Actio	n
Material	Check raw material
	Use greater viscosity material
	Select different shrink additive or level
Process	Relocate charge pattern
Tooling	Polish or buff out tool surface
	Chrome plate tool surface

Surface Waviness

Short term waviness has wave lengths for ¼ to one inch long. Long term waviness has wave lengths from one to five inches. Waviness causes distortion of straight lines on the Class "A" surface and is most readily observed on a painted part.

Probable Cau	se
Material	
Process	Improper spiral flow of SMC sheet when molded
	Inconsistent force on the material during molding
	Parts molded with improper pressure
	Charge pattern cut or placed improperly
	Flow interrupters (mash-offs, core pins, part geometry) in mold
	Partial charge
	• Improper bonding temperature (Undercure) which can cause bond readout,
	causing waviness.
Tooling	
Corrective Ac	tion
Material	
Process	Monitor spiral flow for appropriate values
	Use proper pressure to mold material
	Remove flow interrupters from mold
	Monitor viscosity of paste
	Monitor and control mold temperatures to specs
	Refer to design guide for allowable thick-to-thin transition
	 Verify closure speeds, load pattern (location, size) and leveling
	Verify molding off stops
	Monitor viscosity of paste
Tooling	

Undercure

	an incomplete cure or bake cycle of the SMC in the mold. The part is often extremely ull and can exhibit blown bosses or ribs. This part is scrapped.
Probable Cau	se
Material	Unreactive resin
	Incorrect cure chemistry
Process	Low temperatures and/or short cycle time
	Loss of tonnage
Tooling	
Corrective Ac	tion
Material	Check SMC for cure time
	Check resin reactivity
Process	Check mold cold spots or bad stream lines and regulators
	Verify cure times
	Verify tonnage via parameter sheet
Tooling	

Warpage (Dimensional Error)

	error is the failure of the part to fit the checking fixture or to meet print tolerances due hrink, expansion or tooling error.
Probable Caus	se
Material	Out of spec material
Process	Uneven cure
	Excessive stress on the part when unloading or bonding
	 Not allowing the part to cool on fixture long enough
	Variable charge pattern or placement
	Improper expansion factor in tool for approved material
	Improper thermal expansion material molded in approved mold
	Improperly designed paint fixture
	Degree of cure – bond line
Tooling	Tool temperatures not within spec
Corrective Act	tion
Material	Verify SMC for proper shrinkage
Process	Use heat management design of mold to permit consistent curing of part
	Proper placement of ejector pins reduces demolding stress
	Evaluate process for sufficient cooling time
	 Control charge pattern by area, not weight. When possible use laser light or automation to permit consistent charge placement
	Design paint fixtures to properly support part during baking
	If bonded assembly, review bonding process
	Verify cure time versus tool temperature capability of maintaining correct
	temperature through consecutive moldings.
	Decrease material flow distance
	Increase cure time or temperature
	Vary mold temperature differential
	Increase charge pattern
	Verify mold temperatures
Tooling	 Proper mold design to ensure that the part does not stick to core or cavity
	Work with design engineers early in program so that mold is constructed using
	expansion factors of the newer-technology materials

Water Spots

•	on the painted surface usually in groups. These spots are usually depressions with a bund the edge. Water spots can cause paint failure of top coats/
Probable Caus	se
Material	
Process	Failure to fully dry the part after a wash operation
	Failure to sue a DI water rinse after wash
	Failure to clean and filter DI water to meet specifications
	Part designs which trap water in pockets
	Failure to use a rinse additive which ensures a water break-free surface
Tooling	
Corrective Act	ion
Material	
Process	Dry parts thoroughly after all wash operations
	Design drain holes into parts when necessary to prevent the accumulation of
	water during the wash cycle
	QC rinse water to specs
	Use and maintain a rinse additive after parts washing
Tooling	

White Spots

	t or whitened area on a pigmented surface that occurs as a result of thermoplastic ne problem is associated with pitting occurring in the white spotted area.
Probable Cau	se
Material	Low viscosity builds of SMC through maturation
	Thermoplastic incompatibility with SMC formulations
	Flow restrictions
Process	
Tooling	
Corrective Ac	tion
Material	Verify day 1 viscosity
	Record occurrence and roll yardage when problem occurs
	Record material rates and lot number when problem occurs
	Verify spiral flow of material
Process	Verify load pattern is correct according to engineering specification
	Reduce die coverage to allow for increased flow
Tooling	